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A Non-Cooperate Game

 In 1994, Chemical Bank in New York offered any 

customer who had spent 7 or more minutes in queue 

“ a smile, a handshake and a crisp 5 dollar bill ”, 

the so-called 547 Program of Chemical Bank.

 Forced to jump the cliff together, Bank of America in 

California immediately announced a better 545

program



Features of This Game

 Arriving customers at the service center are different in 

service preference

 Each customer is an individual decision maker for self 

benefit

 Upon arrival, they observe the queue length, then 

decide to join for service or balk depending on 

expected personal gain 



Corresponding Queueing Model I

 Based on different service preference, customers are 

classified into k types

 Customers of type i arrive at a rate λi  and receive 

service that is independent with their types

 One way to characterize the preference:

Joining type-i customers gain Ri at service completion, 

and incur waiting cost at rate Ci while in system; Net 

gain = Ri – Ciw, where w is expected waiting time

Thus, join if and only if Ri – Ciw ≥ 0, or, w ≤ Ri/Ci

 Alternative way:

Tolerance of waiting for type-i is θi = Ri/Ci



Corresponding Queueing Model II

 Arriving customers first observe queue length, then 

decide to join for service or balk depending on net gain.

 Balking customers have no gain or loss

 Assumed asymmetric information, i.e., system 

administrator observes only { λi, θi } 

 Thus, objectives of the administrator are to keep the 

system stable and maximize the throughput rate



General Assumptions on Service

 Customers’ commencements of service are  

stochastically ordered in accordance with arrival times,

such as FCFS, ROS, PS

 Departure rate μn, when n customers are in system, is 

non-decreasing and concave in n

 Once a service started, it will not be interrupted until 

completion, that is, no preemption is allowed nor will 

the service capacity allocated increases

 For all i, μ1 ≤ θi  to avoid triviality



Threshold-Type Decision Rule

 As a non-cooperate game, customers of different types 

are competing for some fixed service capacity so that 

the decision rules (joining or balking) for different types 

of customers are clearly dependent

 Decision rule of each type of customers is of threshold

type, join if queue length is smaller than some n, balk 

otherwise

 Collection of each type’s decision rules is called a 

policy. Denote a policy by N = (N1, ..., Nk), where type-i

customer will join the system if the number of 

customers in the system, regardless their types, is 

strictly less than Ni for any i =1,2,...k



Self-Policy

 Let w(N, n) be expected waiting time of customer who 

finds n-1 customers present at the joining instant and 

future customers using policy N

 w(N, n) is type invariant owing to type invariant service.

 Let ei be the i th unit vector in Rk. Policy N is said to be a 

self-threshold if 

w(N, Ni) ≤ θi  < w(N+ei, Ni +1)

for all i

 We may consider that a self-threshold N is formed by 

negotiation among customer of all types and announced 

to every arriving customer



Self-Policy -- Existence

 For N to be self-threshold, order of {Ni } must coincide 

with order of { θi }. For simple exposition, we will make   

{ θi }, and, thus, {Ni } in increasing order

 Lemma The queueing system with heterogeneous       

customers has at least one self-threshold.

Sketch of Proof : For k = 2 

N2

N1 = N2

N1  Threshold

N2  Threshold



Example 1: M/M/1 PS Queue with 2-Types

 Assume λi = λ2 = 1 and μn = 2 for all n

 Conditioning on the next transition, we get, for example,

w((1, 3),1) = 1/(λ2 +μ1)+ λ2 /(λ2 +μ1) w((1, 3), 2)

 Plug the numbers in, solve the equations and show for

θ1  (0.83, 0.95) and θ2  (1.11, 1.14)

w((1, 3), 1) = 0.64  ≤ θ1 < 0.95 = w((2, 3), 2)

w((1, 3), 3) = 1.11 ≤ θ2 < 1.43 = w((1, 4), 4)

and

w((2, 2), 2) = 0.83 ≤ θ1 < 1.14 < w((3, 3), 3)

w((2, 2), 2) = 0.83 ≤ θ2 < 1.14 = w((2, 3), 3)

 Thus, both (1, 3) and (2, 2) are self-thresholds



Self-Policy -- Multiplicity

 Example 1 demonstrates that for the multi-class queue, 

except for some special cases like the standard GI/M/c 

FCFS queue, there can be multiple self-policies for any 

given {θi }

 It can be shown, under a mild condition, that all self-

polices are connected in integral-lattice domain



Self-Policy -- Nash Equilibrium

 Decision rule of type-i customers is said to be optimal

against policy N if using the rule yields largest expected 

utility for type-i while customers of all types use N 

 Self-policy N is called Nash equilibrium if Ni is optimal 

against N for all i

 Nash equilibrium is a stable policy. In other words, under 

a Nash equilibrium, no one has an incentive to deviate 

from the policy. Therefore, self-threshold policy N is 

equilibrium if

w(N, Ni) ≤ θi  < w(N, Ni +1)

for all i



Example 2: M/M/1 PS Queue with 2-Types

 Does an equilibrium policy always exist?

 In Example 1, for θ1 (0.83, 0.95) and θ2 (1.11, 1.14) 

both (1, 3) and (2, 2) are self-thresholds

 As w((2, 2), 3) = 1.06 < θ2, (2, 2) is not equilibrium;

If θ1(0.83, 0.92), then w((1, 3), 2) = 0.92 > θ1 and 

w((1, 3), 4) = 1.33 > θ2, (1, 3) is equilibrium; if θ1(0.92, 

0.95), it is not. So, no equilibrium policy

 The consequent question would be: Is it possible to 

have multiple equilibrium policies?



Existence and Uniqueness of Equilibrium

 For FCFS queue with multi-class customers, exists 

uniquely 

 For PS queue with singe-class customers, exists none 

or one

 For M/M/1 queue with single-class and increasing μn, 

exists at least one

 Theorem The queue with multi-class customers and 

under general service mode and increasing μn has   

at most one equilibrium self-policy



What if there is no Equilibrium Self-Policy

 Any self-threshold without binding contract cannot be 

stable, and system’s performance under decentralized 

decision fluctuate and never converge.

 A mathematical approach is to consider randomized

threshold, i.e., real-valued thresholds. For example, 

Ben-Shahar, Orda and Shimkin [2000] shows PS queue 

with homogeneous customers always exists a unique 

equilibrium randomization self-threshold.

 With nice mathematical properties, but not practical



Collecting Toll to Equilibrate

 Common economical means to equilibrate the system is 

by imposing toll that modifies {θi }: a type-i customer 

need to pay γi for joining, which will make

w(N, Ni) ≤ θi - γi  < w(N, Ni +1)

with an ``appropriate'' equilibrium self-threshold N. 

 However, there are incentive-compatibility and fairness

issues that are unavoidable and difficult to resolve.

 Similar issues arise if equilibrating by regulating arrival 

rates {λi }



Our Approach to Achieving Equilibrium

 An operational means that is simpler than imposing tolls 

or regulating arrival rates is to modify service rate with 

{θi }, {λi } and service discipline unchanged

 For example, if a FCFS queue with c servers that has 

no equilibrium self-policy, we can let μn = μ min{n, c} to 

make it a standard GI/M/c queue under FCFS that has 

a unique equilibrium self-policy.

 Require to show for any given {θi } and {λi }, it always 

exists such a service rate modification. In other words, 

when μ = { μn } is at our disposal, the system can be led 

to equilibrium state



Equilibration

 Let S be feasible control space that contains all μ = { μn }

that μn is non-decreasing and concave in n

 We will construct a correspondence R : S → S with 

original μ  S, R(μ) outputs a set of service rates under 

which the system is equilibrium

 Key tool to show R(μ) is not empty is by Kakutani Fixed 

Point Theorem:

A correspondence having a fixed point if it is

defined on non-empty, compact and convex domain,

non-empty, convex-valued, and having closed graph



Fixed Point Theorem
 Lemma 1. Feasible control set S is compact and convex.

 Next, construct point-to-set mapping

Rj = hj 。 fj 。g : S → S-j

and R : S → S as Cartesian product of Rj, i.e.,

R = R1 Х R2 Х ∙∙∙ Х Rk       where

1. Function g : S → Ik as g(μ)=(N1, N2, ..., Nk), i.e., under 

μ, N is certain self-policy

2. Correspondence fj : Ik → S as

fj(N) = { μ  S: such that Nj is equilibrium}   

3. Function hj : S → S-j as

hj( μ1, μ2, ..., μk ) = ( μNj-1+1, μNj-1+2, ..., μNj 
)



Existence of Feasible Rate Modification

 Lemma 2. Correspondence Rj is non-empty, convex-

valued and has a closed graph for all j.

 With Lemma 1 and 2, R meets the conditions of 

Kakutani Fixed Point Theorem. So, we have shown that 

there exists some μ = R(μ).

 To conclude

Theorem. For the queue with arriving rate {λi } and utility 

{θi }, there exists service rate { μn } that under which 

an equilibrium self-policy is guaranteed



Incentive-Compatibility and Fairness

 The modification of service rate is based on number of 

customers in the system, not on the types, it is clearly 

incentive compatible

 While there could be infinitely many ways to modify the 

departure rate for equilibration, we define various 

criterion of fairness to find appropriate ones

 Denote μn as original rate and μn
m as modified rate



Minimal Adjustment

 A natural modification is to adjust {μn } as little as possible

when converting non-equilibrium N to become 

equilibrium.

 It is appropriate if the cost of rate modification is of major 

concern and proportional to the amount of change

 For that goal, we obtain optimal modification from

Min Σn=1
Nk | μn

m- μn|

s.t. μm  R(S)



Maximal Adjustment

 If system’s concern is on the operation cost rate that is 

proportional to the service rate, then an appropriate

adjustment is to reduce {μn } as much as possible when 

converting non-equilibrium N to become equilibrium.

 For that goal, we obtain optimal modification from

Max Σn=1
Nk | μn

m- μn
o| Pn

s.t. μm  R(S)



Minimal Mean Waiting Time Increased

 To eliminate the arbitrage, the rate should be reduced so 

that the mean waiting times will increase accordingly. 

From customers' perspective, a fair adjustment, while 

leads to equilibrium, should increase their mean waiting 

time in the system as little as possible. 

 For that goal, we obtain optimal modification from

Min Σn=1
Nk | wm(N, n) - w(N, n) |

s.t. μm  R(S)



Example 3: Optimal Rate Modifications

 In Example 2, θ1 = 0.940, θ2 =1.131 and μn = 2 for all n, 

self-policy (1, 3) is non-equilibrium due to N1. 

 Minimal adjustment, we get μ1
m= 1.92, μ2

m= 1.95, and 

μn
m= 2 for n ≥ 3. Amount of adjustment: (2-1.92)+(2-

1.95) = 0.13, minimal.

 Maximal adjustment, we get μ1
m =1.75 and μn

m= 2 for n

≥ 2. Amount of adjustment: 2-1.75 = 0.25,  maximal.

 Fair adjustment, we get μ1
m =1.93, μ2

m =1.93 and μn
m 

=2.04 for n ≥ 3. Total mean waiting time increased by 

0.053, compared to 0.066 under minimal rate 

adjustment.

Notice that μ3
m is increased from 2 to 2.04. 



Thanks for Your Attention
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