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A Non-Cooperate Game

 In 1994, Chemical Bank in New York offered any 

customer who had spent 7 or more minutes in queue 

“ a smile, a handshake and a crisp 5 dollar bill ”, 

the so-called 547 Program of Chemical Bank.

 Forced to jump the cliff together, Bank of America in 

California immediately announced a better 545

program



Features of This Game

 Arriving customers at the service center are different in 

service preference

 Each customer is an individual decision maker for self 

benefit

 Upon arrival, they observe the queue length, then 

decide to join for service or balk depending on 

expected personal gain 



Corresponding Queueing Model I

 Based on different service preference, customers are 

classified into k types

 Customers of type i arrive at a rate λi  and receive 

service that is independent with their types

 One way to characterize the preference:

Joining type-i customers gain Ri at service completion, 

and incur waiting cost at rate Ci while in system; Net 

gain = Ri – Ciw, where w is expected waiting time

Thus, join if and only if Ri – Ciw ≥ 0, or, w ≤ Ri/Ci

 Alternative way:

Tolerance of waiting for type-i is θi = Ri/Ci



Corresponding Queueing Model II

 Arriving customers first observe queue length, then 

decide to join for service or balk depending on net gain.

 Balking customers have no gain or loss

 Assumed asymmetric information, i.e., system 

administrator observes only { λi, θi } 

 Thus, objectives of the administrator are to keep the 

system stable and maximize the throughput rate



General Assumptions on Service

 Customers’ commencements of service are  

stochastically ordered in accordance with arrival times,

such as FCFS, ROS, PS

 Departure rate μn, when n customers are in system, is 

non-decreasing and concave in n

 Once a service started, it will not be interrupted until 

completion, that is, no preemption is allowed nor will 

the service capacity allocated increases

 For all i, μ1 ≤ θi  to avoid triviality



Threshold-Type Decision Rule

 As a non-cooperate game, customers of different types 

are competing for some fixed service capacity so that 

the decision rules (joining or balking) for different types 

of customers are clearly dependent

 Decision rule of each type of customers is of threshold

type, join if queue length is smaller than some n, balk 

otherwise

 Collection of each type’s decision rules is called a 

policy. Denote a policy by N = (N1, ..., Nk), where type-i

customer will join the system if the number of 

customers in the system, regardless their types, is 

strictly less than Ni for any i =1,2,...k



Self-Policy

 Let w(N, n) be expected waiting time of customer who 

finds n-1 customers present at the joining instant and 

future customers using policy N

 w(N, n) is type invariant owing to type invariant service.

 Let ei be the i th unit vector in Rk. Policy N is said to be a 

self-threshold if 

w(N, Ni) ≤ θi  < w(N+ei, Ni +1)

for all i

 We may consider that a self-threshold N is formed by 

negotiation among customer of all types and announced 

to every arriving customer



Self-Policy -- Existence

 For N to be self-threshold, order of {Ni } must coincide 

with order of { θi }. For simple exposition, we will make   

{ θi }, and, thus, {Ni } in increasing order

 Lemma The queueing system with heterogeneous       

customers has at least one self-threshold.

Sketch of Proof : For k = 2 

N2

N1 = N2

N1  Threshold

N2  Threshold



Example 1: M/M/1 PS Queue with 2-Types

 Assume λi = λ2 = 1 and μn = 2 for all n

 Conditioning on the next transition, we get, for example,

w((1, 3),1) = 1/(λ2 +μ1)+ λ2 /(λ2 +μ1) w((1, 3), 2)

 Plug the numbers in, solve the equations and show for

θ1  (0.83, 0.95) and θ2  (1.11, 1.14)

w((1, 3), 1) = 0.64  ≤ θ1 < 0.95 = w((2, 3), 2)

w((1, 3), 3) = 1.11 ≤ θ2 < 1.43 = w((1, 4), 4)

and

w((2, 2), 2) = 0.83 ≤ θ1 < 1.14 < w((3, 3), 3)

w((2, 2), 2) = 0.83 ≤ θ2 < 1.14 = w((2, 3), 3)

 Thus, both (1, 3) and (2, 2) are self-thresholds



Self-Policy -- Multiplicity

 Example 1 demonstrates that for the multi-class queue, 

except for some special cases like the standard GI/M/c 

FCFS queue, there can be multiple self-policies for any 

given {θi }

 It can be shown, under a mild condition, that all self-

polices are connected in integral-lattice domain



Self-Policy -- Nash Equilibrium

 Decision rule of type-i customers is said to be optimal

against policy N if using the rule yields largest expected 

utility for type-i while customers of all types use N 

 Self-policy N is called Nash equilibrium if Ni is optimal 

against N for all i

 Nash equilibrium is a stable policy. In other words, under 

a Nash equilibrium, no one has an incentive to deviate 

from the policy. Therefore, self-threshold policy N is 

equilibrium if

w(N, Ni) ≤ θi  < w(N, Ni +1)

for all i



Example 2: M/M/1 PS Queue with 2-Types

 Does an equilibrium policy always exist?

 In Example 1, for θ1 (0.83, 0.95) and θ2 (1.11, 1.14) 

both (1, 3) and (2, 2) are self-thresholds

 As w((2, 2), 3) = 1.06 < θ2, (2, 2) is not equilibrium;

If θ1(0.83, 0.92), then w((1, 3), 2) = 0.92 > θ1 and 

w((1, 3), 4) = 1.33 > θ2, (1, 3) is equilibrium; if θ1(0.92, 

0.95), it is not. So, no equilibrium policy

 The consequent question would be: Is it possible to 

have multiple equilibrium policies?



Existence and Uniqueness of Equilibrium

 For FCFS queue with multi-class customers, exists 

uniquely 

 For PS queue with singe-class customers, exists none 

or one

 For M/M/1 queue with single-class and increasing μn, 

exists at least one

 Theorem The queue with multi-class customers and 

under general service mode and increasing μn has   

at most one equilibrium self-policy



What if there is no Equilibrium Self-Policy

 Any self-threshold without binding contract cannot be 

stable, and system’s performance under decentralized 

decision fluctuate and never converge.

 A mathematical approach is to consider randomized

threshold, i.e., real-valued thresholds. For example, 

Ben-Shahar, Orda and Shimkin [2000] shows PS queue 

with homogeneous customers always exists a unique 

equilibrium randomization self-threshold.

 With nice mathematical properties, but not practical



Collecting Toll to Equilibrate

 Common economical means to equilibrate the system is 

by imposing toll that modifies {θi }: a type-i customer 

need to pay γi for joining, which will make

w(N, Ni) ≤ θi - γi  < w(N, Ni +1)

with an ``appropriate'' equilibrium self-threshold N. 

 However, there are incentive-compatibility and fairness

issues that are unavoidable and difficult to resolve.

 Similar issues arise if equilibrating by regulating arrival 

rates {λi }



Our Approach to Achieving Equilibrium

 An operational means that is simpler than imposing tolls 

or regulating arrival rates is to modify service rate with 

{θi }, {λi } and service discipline unchanged

 For example, if a FCFS queue with c servers that has 

no equilibrium self-policy, we can let μn = μ min{n, c} to 

make it a standard GI/M/c queue under FCFS that has 

a unique equilibrium self-policy.

 Require to show for any given {θi } and {λi }, it always 

exists such a service rate modification. In other words, 

when μ = { μn } is at our disposal, the system can be led 

to equilibrium state



Equilibration

 Let S be feasible control space that contains all μ = { μn }

that μn is non-decreasing and concave in n

 We will construct a correspondence R : S → S with 

original μ  S, R(μ) outputs a set of service rates under 

which the system is equilibrium

 Key tool to show R(μ) is not empty is by Kakutani Fixed 

Point Theorem:

A correspondence having a fixed point if it is

defined on non-empty, compact and convex domain,

non-empty, convex-valued, and having closed graph



Fixed Point Theorem
 Lemma 1. Feasible control set S is compact and convex.

 Next, construct point-to-set mapping

Rj = hj 。 fj 。g : S → S-j

and R : S → S as Cartesian product of Rj, i.e.,

R = R1 Х R2 Х ∙∙∙ Х Rk       where

1. Function g : S → Ik as g(μ)=(N1, N2, ..., Nk), i.e., under 

μ, N is certain self-policy

2. Correspondence fj : Ik → S as

fj(N) = { μ  S: such that Nj is equilibrium}   

3. Function hj : S → S-j as

hj( μ1, μ2, ..., μk ) = ( μNj-1+1, μNj-1+2, ..., μNj 
)



Existence of Feasible Rate Modification

 Lemma 2. Correspondence Rj is non-empty, convex-

valued and has a closed graph for all j.

 With Lemma 1 and 2, R meets the conditions of 

Kakutani Fixed Point Theorem. So, we have shown that 

there exists some μ = R(μ).

 To conclude

Theorem. For the queue with arriving rate {λi } and utility 

{θi }, there exists service rate { μn } that under which 

an equilibrium self-policy is guaranteed



Incentive-Compatibility and Fairness

 The modification of service rate is based on number of 

customers in the system, not on the types, it is clearly 

incentive compatible

 While there could be infinitely many ways to modify the 

departure rate for equilibration, we define various 

criterion of fairness to find appropriate ones

 Denote μn as original rate and μn
m as modified rate



Minimal Adjustment

 A natural modification is to adjust {μn } as little as possible

when converting non-equilibrium N to become 

equilibrium.

 It is appropriate if the cost of rate modification is of major 

concern and proportional to the amount of change

 For that goal, we obtain optimal modification from

Min Σn=1
Nk | μn

m- μn|

s.t. μm  R(S)



Maximal Adjustment

 If system’s concern is on the operation cost rate that is 

proportional to the service rate, then an appropriate

adjustment is to reduce {μn } as much as possible when 

converting non-equilibrium N to become equilibrium.

 For that goal, we obtain optimal modification from

Max Σn=1
Nk | μn

m- μn
o| Pn

s.t. μm  R(S)



Minimal Mean Waiting Time Increased

 To eliminate the arbitrage, the rate should be reduced so 

that the mean waiting times will increase accordingly. 

From customers' perspective, a fair adjustment, while 

leads to equilibrium, should increase their mean waiting 

time in the system as little as possible. 

 For that goal, we obtain optimal modification from

Min Σn=1
Nk | wm(N, n) - w(N, n) |

s.t. μm  R(S)



Example 3: Optimal Rate Modifications

 In Example 2, θ1 = 0.940, θ2 =1.131 and μn = 2 for all n, 

self-policy (1, 3) is non-equilibrium due to N1. 

 Minimal adjustment, we get μ1
m= 1.92, μ2

m= 1.95, and 

μn
m= 2 for n ≥ 3. Amount of adjustment: (2-1.92)+(2-

1.95) = 0.13, minimal.

 Maximal adjustment, we get μ1
m =1.75 and μn

m= 2 for n

≥ 2. Amount of adjustment: 2-1.75 = 0.25,  maximal.

 Fair adjustment, we get μ1
m =1.93, μ2

m =1.93 and μn
m 

=2.04 for n ≥ 3. Total mean waiting time increased by 

0.053, compared to 0.066 under minimal rate 

adjustment.

Notice that μ3
m is increased from 2 to 2.04. 



Thanks for Your Attention
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